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1. ABSTRACT

O éheyyog evotdbelag amotelel Evav amd TOVG TO GNUAVTIKOVS TUTTOLS VITOAOYICHOD TWV
ocLVNOMG AEMTAOV UETOAMKOV KOTOGKELAOV, 0 0T0l0g KLplapyel YeVIKG GTOV GYESUGUO
T00G. Méow TV moapadoctak®mv pedddmv oyedacpod Evavit guotdbelag, o PEAN Log
KOTAOKELNG VIToAoyilovtal ®¢ HeoVoOLEVA oTolyelo 1Ue KOTAAANAES TOPAUETPOLS (UNKN
Ayiopov, pn otnpllopeva PNk, GUVIEAEGTEG MOPEUTOOIONG KAT) pe OKOTO vo Angdet
VIOYT 1 GUVEYEL LLE TOL GLVOEOUEVA LEAT.

10 ke@aiato 6.3.4 tov Evpoxkddwa EN 1993-1-1, opiletar pio kavotoépog dtadtkacio
Y. TO OYeOoUO EVOTAOES TOV UETOAMKOV KOTOOKELAV HE TN YXPNON TOV
AmOTEAECUATOV TNG avdAvong €AACTIKNG €voTdlelng Tov KaBoAKoh poviéAov 1 omoia
ovopdletar ocvvnbmg "T'evikn péBodog". H pébodog avtn eivar Pacikd KatdAAnAn yio
YPNOTM HEGH AOYIGHIKOD, dAAG £YEl KATOEG VITOAOYIOTIKEG AOUTNOEL. XT0 Tapdv Gpbpo,
napovctaletar 1 opbn epappoyn g neBddov avtng, 6€ GYEON LE TOLG OPLOUNTIKOVG
VTOAOYIGHOVS TOV TOPUUETPOV GYEOAGHOV. Tol TO GNUOVTIKA TPOKTIKE TPOPANLOTA OTN
dwdkacio avt) glvor (1) ot EAdYIOTEG OMOUTAGELS TOV HOVTEAOL TPOGOUOIMGNG Yol TV
a&loAdyNno”n ™G EANCTIKNG KOOOMKNG HOPENS ADYIGHOD KOl TOV EAUCTIKOV KPIGIU®V
eoptiwv kot (2)  emAoyn ™G KATAAANANG LOPPNG AVYIGLOV Y1 VO LEAOG TOV LOVTEAOV.
[MapdAinia, ektdg amd TNV AVOPOPA TPAKTIKMOV TPOTAGEMY Y10 T0 MG AVE® OVOPEPOUEVA
TpoPAnLata, TapovstalovTol Kot KAmolo Tapadetypota erainfevong.

1. INTRODUCTION

When verifying the stability of beam-columns (members under combined axial load and
bending) there are three different procedures in the current version of EN 1993-1-1 [1]:

(1)  Animperfection approach described in Sections 5.2 and 5.3

2 An isolated member approach described in Sections 6.3.1, 6.3.2 and 6.3.3

3) The so-called “General method” (GM) described in Section 6.3.4

In the first approach the structural model is subjected to appropriate geometrical
imperfections and after a completing a second order analysis only the cross section
resistances need be checked (clause 5.2.2(7)(a)). This method is generally not used in
practice due to the uncertainty in the definition of the shapes, amplitudes and signs of the
equivalent imperfections. The second approach is the conventional engineering solution for



buckling problems, but is limited to uniform members only with relatively simple support
and loading conditions. The method is based on two essential simplifications:
= Structural member isolation: the relevant member is isolated from the global
structural model by applying special boundary conditions (supports, restraints or
loads) at the connection points which are taken into account in the calculation of
the buckling resistance.
= Buckling mode separation: the buckling of the member is calculated separately for
the pure modes: flexural buckling for pure compression and lateral-torsional
buckling for pure bending, and the two effects are connected by applying special
interaction factors.
Although EN 1993-1-1 provides direction on the calculation of interaction factors in
Annex A and Annex B, the choice of appropriate buckling lengths for complex problems is
left entirely to the engineer.
The GM is a progressively new approach for stability design and only appeared late in the
development of the Eurocodes — it did not appear in the draft of 1992, for example. The
basic idea behind the GM is that it no longer isolates members and separates the pure
buckling modes, but considers the complex system of forces in the member and evaluates
the appropriate compound buckling modes. This calculation is usually done by direct
global stability analysis of the whole structural model and normally suited for finite
element analysis implemented into structural analysis software packages. The method
offers the possibility to provide solutions where the isolated member approach is not
entirely appropriate:
= It is applicable not only for single, isolated members but also for sub frames or
complete structural models where the governing buckling mode involves the
complete frame;
= |t can examine irregular structural members such as tapered members, haunched
members, and built-up members;
= |t is applicable for any irregular load and support system where separation into the
pure buckling modes is not possible.
Although in the current version of the Eurocode the GM is recommended only for lateral
and lateral-torsional buckling of structural components, the basic approach may be
extended to other cases. A number of research projects are underway across Europe
intended to verify and widen its applicability [2].

2. DESCRIPTION OF THE “GENERAL METHOD”

The rules of the GM is defined in the Eurocode EN 1993-1-1 6.3.4. The GM uses the
relevant global buckling modes and associated critical load factors for the out-of-plane
stability verification of the structural model. The demonstrative example shows a simply
supported HEA200 column restrained at mid-height laterally and torsionally (Fig. 1 a)).
The column is subjected to compression and lateral uniformly distributed load acting
eccentrically on the flange. The steps of the calculation of the buckling resistance
(interaction of the lateral and lateral-torsional buckling) is shown in Table 1 using both the
classical isolated member approach (based on the separation of pure buckling modes) and
the GM. In case of the GM an in-plane imperfection is added in order to include the second
order amplification effect of the compression force on the major axis bending moment. All
the necessary calculations are performed on ConSteel software [5].
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Fig. 1 a) Restrained column subjected to compression and bending, b) first order bending
moment, c) second order bending moment, d) out-of-plane buckling shape

Steps Classical approach EN 1993-1-16.3.3 “General method” EN 1993-1-1 6.3.4
la | Imperfection: none eoy,d=800/317 =2,53cm [1b, Tab. NA.1]
€oy,d
1b | Member forces Ngg = 300kN Ngg = 300&kN
max M, gg = 32kNm (first order) maxM, g4 = 53,1kNm  (second order)
2 Cross-section Nege = 1264,3EN (6.10)-(6.11) Cyit i :ﬁ =1,310 (6.65)
resistances Mg pe = 100.9kNm (6.13)-(6.15) BT TTATTY
3 | Elastic critical Nery = 1194kN §6.3.1.2(1) CONSTEEL: a,,,, = 3.82 §6.3.4(3)
forces and Nepz = 1736kN §6.3.1.2(1)
factors M. = 220,9kNm §6.3.2.2(2)
_ o _ ™ Iisip
4 | Slendemess I,= | =% =1029 §63.1.2(1) | A= lmk— [Z20_ 0556 (6.64)
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_ L
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T M:. k
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5 | Reduction xy(Z,.8) =0.580 (6.49) xz\dpp.c) = 0794 (6.49)
factors ye(1c) =0.630 (6.49) xur(Zop.b) = 0,924 (6.57)
¥ir A b) = 0,880 (6.57) ¥op = minly,.x,r]= 0,794
6 Interaction ky, =1,202 [1a, Annex E] —
factors kg, = 0,936 [14, Annex E]
- Neg Mygd Neg Myed _
7 Stability check —= —+ Ky 7w o= 096 (6.61) xr,fm + g = 0.956  (6.66)
¥r1 M';?-!i ¥a1 '.fb:\i;ri
Neg Ed Mea Ed
Xz'"EE Ek + kx.}' XLTMepk — 0.79 (6.62) XG‘FE:.RK + Xop MRk 1058 (6.65)
Lo Lo ¥ M1

Table 1. Steps of the “General method”

It can be seen that the basic difference is in the calculation of elastic critical forces (Step 3)
where the integrated approach does not separate the pure loads but uses the complex




system for the determination of the compound buckling mode (see Fig. 1 d) and the elastic
critical load factor owrop Which is naturally includes all interactions between the different
buckling effects. Accordingly one overall slenderness value describes the buckling
problem and there is no need for interaction factors. The final utilization is quite similar to
the result of the classical method. However since this methodology can be used in the same
way for any type of loading and support system the uncertainties in the separation of the
pure buckling modes and the determination of the necessary buckling parameters (buckling
lengths, moment gradient factors and parameters in the interaction factors) are smartly
eliminated. It is also noticeable that the method b) for the calculation of the reduction
factors (formula 6.65) gives unnecessarily high utilization. One of the key points of the
method is the calculation of the elastic critical load factor it is discussed in the next section.

3. EVALUATION OF THE ELASTIC CRITICAL LOAD FACTOR oar,op

The power of the GM lies in the use of the complex elastic buckling analysis of the global
structural model in order to evaluate the associated owrop and the overall slenderness. There
are more numerical FE model applicable for this buckling analysis however these should
satisfy some mechanical aspects in order to be accurate and reliable:
= Cover all types of buckling modes — flexural, torsional, lateral-torsional, any
interactions
= Cover the effect of member, load and support eccentricities
= Yield solution for member, load and support irregularities — web tapering,
haunches, etc.
On the other hand from practical point of view the model should be not so complex to keep
efficiency by the quick modelling and easy results handling, this is the efficiency problem.
Satisfying both requirements the 7 DOF Vlasov beam element is proved to be a very
accurate and efficient model for the global elastic buckling analysis [3] yielding reliable
results for the buckling modes of steel structures. The elastic global stability analysis is
usually performed by linear buckling analysis. In a standard finite element environment
this problem can be expressed as a linear eigenvalue analysis with the following basic
form:

(KE _aKG)U:O (1)

where Kk is the elastic stiffness matrix, Kg is the second order geometric stiffness matrix,
o is the eigenvalue and U is the corresponding eigenvector. In the mechanical
interpretation the eigenvalue denotes the elastic critical load level and the eigenvector
shows the eigenshape (eigenmode) or buckling shape (buckling mode).

As it has been shown the GM is evaluated on member level but the buckling modes are
calculated on the global structural model. The correct application of the GM therefore
requires the use of the most relevant buckling mode and the corresponding elastic critical
load factor for the proper stability design of the member under examination. In the case of
a complex 3D structural model with several load combinations and a great amount of
different but relevant buckling modes it is usually not evident that for a certain member
which is the most relevant mode for the design [4] this is the relevancy problem. This
problem is quite complicated but also very significant, since in the case of a complex
structural model it is usual, that different buckling modes describe the stability behavior of
distinct parts of the model. For that reason a scaling procedure is necessary in order to
select the appropriate buckling mode for the stability design of members. In order to do so



the deformation energy generated by the i-th buckling mode is used as a basic measure
which can be formulated as follows :
E = 1 UK,

2 )
This deformation energy can be calculated for each single member k of the model from the
same global buckling mode using the proper stiffness of matrix part k:
Eik = E UiT KEUi

2 ©)
where the following summations holds for the global model composed of a total number of
m members:

Ke =Y KgandE; =) Ef

k=1 k=1 (4)
Using these measures a specific scaling procedure can be constructed defining a so called
mode relevance factor (MRF) which indicates what the relevant (critical) members (k) are
for the i-th buckling mode. The basic assumption for this factor is that each buckling mode
has one (or more) specific member(s) which is (are) the most critical and all the members
are compared to this one to assess the contribution to the buckling:

Tk
Ui KEUi [%]

MRF* =100 -
max(U; KgU,)

(5)

For the most critical member this factor always takes 100%, and the more critical a
member the closer is the MRF to 100%. This factor can provide informative help for the
engineer to select the most relevant buckling mode for the stability design of members in
the complex 3D model.

4. EXAMPLE FOR THE USE OF THE GM

A 2D frame is presented as an example taken from the book of [5] at Section 9.9.5 page
413 and the geometry and loads modeled in ConSteel [5] are shown in Fig. 2.
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Fig. 2 Example of a two-bay two-storey frame



The two outside columns are fixed the inside column is pinned and the middle beam is
considered to be prevented from any type of buckling by the connected slab. Fig. 3 shows
the first three dominant global buckling modes with the corresponding mode relevance
factors for each member calculated by ConSteel [5].
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Fig. 3 Dominant global buckling modes and MRFs with elastic critical load factors a)
acr,op:2,63; b) 0((:|’,op:7,88; b) ocr=12,78

Studying the illustrated buckling modes it can be seen, that the first mode is the lateral-
torsional buckling mode of the upper beam, the second mode is the flexural-torsional
buckling of the middle column and the third one is the in-plane swaying buckling mode of
the whole model. The last mode can not be the base of the GM based buckling design,
since it is only valid for out-of-plane buckling, but can be applied as in-plane imperfection.
The MRFs show apparently the critical members for the different buckling modes — in this
demonstration example the validity of these factors can be easily checked by the graphic of
the buckling modes. As it can be seen the MRFs are a very good measure for detecting the
relevant buckling mode for a certain member which can support a highly automated and
efficient stability design procedure together with the GM. Therefore for the upper beams
the first mode is selected with owr0p=2,63, for the middle column the second mode with
oer,0p=7,88 and the member slenderness values are calculated accordingly. For the outside
columns the third mode is used by applying as the proper equivalent geometric in-plane
imperfection. In Fig. 3 the contribution from other members can be also detected by the
MRFs which is a valuable information on how isolated are the different buckling modes. In
Table 2 the results of the stability design checks based on the GM for the upper beam and
middle column are illustrated and compared with the results of [5] using the classical



design method. The final utilization values are quite comparable but the differences
indicate the inaccuracy of the member isolation method: in case of the beams it yields

lower utilization while for the columns the utilization is higher.

Upper beam Middle column
gcl)(r:];llr;?gnplace of left beam, right end section ggct:?omn column, uppermost
Ned [KN] -13,5 -282,2
My,eq [kKNm] 33,2 17,5
Olultk 2,04 3,37
Oler,op 2,63 7,88
jﬂp 0,881 0,654
x 0,673 0,753
LT 0,771 0,892
Utilization 57,4% 36,8%
Utilization in [40] 52% 42%

Table 2. Stability design checks of the frame based on the GM

5. CONCLUSIONS

The paper presented the description and application of the “General Method” which has
been introduced by the EC3-1-1 6.3.4 for the stability design of steel structures. The basic
rules and application steps are introduced and compared to the classical member isolation
method in order to understand the different parameters. It is shown that the most
fundamental step is the calculation of the elastic critical load factor for the overall
slenderness of the members. A method for the selection of relevant buckling mode is
presented and shown on a demonstrative example.
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SUMMARY

The stability check is one of the most basic design type of the usually slender steel
structures which generally govern the design. In the traditional way of stability design the
members of the structure are calculated as single isolated elements with proper parameters
(buckling lengths, unbraced lengths, end restrain factors etc.) in order to consider the
connectivity to the surrounding structural members. The Eurocode EN 1993-1-1 in section
6.3.4 defines a new and innovative procedure for the stability design of steel structures
using the results of the elastic stability analysis of the global structural model, it is usually
called “General method”. The method is basically suited for software, but has some
requirements for the calculations needed. In this paper the correct application is reviewed
regarding the numerical calculation of the design parameters. The most important practical
problems are (1) the minimum requirements of the analysis model for the evaluation of the
elastic global buckling modes and elastic critical loads and (2) the selection of the proper
buckling mode for a member of the model. Besides giving practical proposals for the
problems some validation examples are also presented.



